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Solution to Assignment 7

Section 7.3

10. We let F (t) =
∫ t
a f . Then G(x) =

∫ ν(x)
a f = F (ν(x)) . Applying the Chain Rule and then

the Second Fundamental Theorem,

G′(x) = F ′(ν(x))ν ′(x) = f(ν(x))ν ′(x) .

11. First,

F (x) =

∫ x2

0

1

1 + t3
dt .

By taking ν(x) = x2 and applying the previous problem, we have

F ′(x) =
1

1 + x6
× 2x =

2x

1 + x6
.

Next, write

F (x) =

∫ x

0

√
1 + t2dt−

∫ x2

0

√
1 + t2dt ,

and apply the previous problem separately to get

F ′(x) =
√

1 + x2 − 2x
√

1 + x4 .

16. Differentiate both sides to get
f(x) = −f(x) ,

after noting ∫ 1

x
f =

∫ 1

0
f −

∫ x

0
f .

Check the assumption for the Second Fundamental Theorem.

Supplementary Exercise

1. Evaluate the following integrals ∫ a

0
x2
√
a2 − x2dx .
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Solution. WLOG take a > 0. Use the change of variables x = a sin θ, θ ∈ [0, π/2]. Then
dx/dθ = a cos θ on [0, π/2].∫ a

0
x2
√
a2 − x2 dx =

∫ π/2

0
a2 sin2 θ(| a | cos θ)(a cos θ) dθ

= a4
∫ π/2

0
sin2 θ cos2 θ dθ

=
a4

4

∫ π/2

0
sin2 2θ dθ

=
a4

4

∫ π/2

0

(
1− cos 4θ

2

)
dθ

=
a4

8

(
θ − sin 4θ

4

) ∣∣∣π/2
0

=
πa4

16
.

2. Prove the following formula: For any “nice” function f∫ π

0
xf(sinx)dx =

π

2

∫ π

0
f(sinx)dx.

Solution.∫ π

0
xf(sinx) dx =

∫ π/2

0
xf(sinx) dx+

∫ π

π/2
xf(sinx) dx

=

∫ π/2

0
xf(sinx) dx+

∫ 0

π/2
(π − u)f(sin(π − u))(−1) du

=

∫ π/2

0
xf(sinx) dx+

∫ π/2

0
(π − x)f(sinx) dx = π

∫ π/2

0
f(sinx) dx .

Similarly, ∫ π

0
f(sinx) dx =

∫ π/2

0
f(sinx) dx+

∫ 0

π/2
f(sin(π − u))(−1) du

= 2

∫ π/2

0
f(sinx) dx .

Hence, ∫ π

0
xf(sinx) dx =

π

2

∫ π

0
f(sinx) dx .

3. Evaluate the integral ∫ π

0

x sinx

1 + cos2 x
dx.

Hint: Use the previous problem.
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Solution. ∫ π

0

x sinx

1 + cos2 x
dx =

∫ π

0

x sinx

2− sin2 x
dx

=
π

2

∫ π

0

sinx

2− sin2 x
dx

= −π
2

∫ π

0

− sinx

1 + cos2 x
dx

=
−π

2

∫ π
0 d(cosx)

1 + cos2 x

= −π
2

Arctan cosx

∣∣∣∣π
0

=
π2

4
.

4. For a continuous function f on [−a, a], prove that when it satisfies∫ a

−a
fg = 0,

for all even, integrable functions g, it must be an odd function.

Solution. Step 1. Define:
f = fe + fo

fe =
f(x) + f(−x)

2

fo =
f(x)− f(−x)

2

Note fe is even while fo is odd.
Then,

0 =

∫ a

−a
fg =

∫ a

−a
feg +

∫ a

−a
fog .

Use change of variables,

∫ 0

−a
fog =

∫ 0

−a
fo(x)g(x)dx

=

∫ 0

−a
fo(−x)g(−x)dx

=

∫ a

0
fo(−x)g(x)dx

= −
∫ a

0
fo(x)g(x)dx .

Therefore,
∫ a
−a fog = 0.

It follows that

0 =

∫ a

−a
feg .

As fe is even, set g = fe,
∫ a
−a fe

2 = 0 ⇒ fe ≡ 0, so f = fo is odd. At the last we use the
continuity of f (so are fe and fo).
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5. Evaluate the following integrals:

(a) ∫ π

0
x sinxdx ,

(b) ∫ 1

0
Arccosxdx.

The inverse cosine function Arccos maps [−1, 1] to [0, π].

Solution. (a)∫ π

0
x sinx dx = −

∫ π

0
x d(cosx) = (−x cosx)

∣∣∣∣π
0

+

∫ π

0
cosx dx = π .

(b) Let x = cos θ, θ ∈ [0, π/2]. Then dx/dθ = − sin θ on [0, π/2]. Then∫ 1

0
Arccos x dx = −

∫ π/2

0
θ d(cos θ)

= (−θ cos θ)

∣∣∣∣π/2
0

+

∫ π/2

0
cos θ dθ

= 1 .

6. Evaluate the following integrals:

(a) ∫ 1

0
(1− x2)ndx ,

(b) ∫ 1

0
xm(log x)ndx, m, n ∈ N.

Solution. (a)

Let x = sin θ, θ ∈ [0, π/2]. Then dx/dθ = cos θ on [0, π/2].

In ≡
∫ 1

0
(1− x2)n dx =

∫ π/2

0
cos2n+1 θ dθ

=

∫ π/2

0
cos2n θ d(sin θ)

= (cos2n θ sin θ)
∣∣∣π/2
0

+ 2n

∫ π/2

0
cos2n−1 θ sin2 θ dθ

= 2n

∫ π/2

0
cos2n−1 θ(1− cos2 θ) dθ

= 2n

∫ π/2

0
cos2n−1 θ dθ − 2n

∫ π/2

0
cos2n+1 θ dθ = 2nIn−1 − 2nIn .
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Therefore,

In =
2n

2n+ 1
In−1

=
2n

2n+ 1

2n− 2

2n− 1
· · · 2

3
I0

=
22n(n!)2

(2n+ 1)!

∫ π/2

0
cos θ dθ

=
22n(n!)2

(2n+ 1)!
sin θ

∣∣∣π/2
0

=
22n(n!)2

(2n+ 1)!
.

(b)

Im,n ≡
∫ 1

0
xm(log x)n dx =

1

m+ 1
lim
ε→0

∫ 1

ε
(log x)nd(xm+1)

= lim
ε→0

xm+1

m+ 1
(log x)n

∣∣∣1
ε
− 1

m+ 1

∫ 1

0
xm+1(n(log x)n−1)

1

x
dx

= − n

m+ 1

∫ 1

0
xm(lnx)n−1 dx

= − n

m+ 1
Im,n−1

= (−1)n
n!

(m+ 1)n
Im,0

= (−1)n
n!

(m+ 1)n

∫ 1

0
xm dx

=
(−1)nn!

(m+ 1)n
xm+1

m+ 1

∣∣∣1
0

=
(−1)nn!

(m+ 1)n+1
.

7. Study the uniform convergence for the following sequences of functions. Find the pointwise
limits first.

(a)

{
x

x+ n

}
; [0,∞), [0, 12] .

(b)

{
xn

1 + xn

}
; [0,∞), [0, 1], [2, 5] .

Solution. (a) Let fn be the sequence. We have f ′n(x) = n/(x + n)2 > 0 which means
the function is increasing. So ‖fn − 0‖∞ = ‖fn‖∞ = 1, which is not equal to zero. This
sequence is not uniformly convergent to 0 on [0,∞). If now we restrict to [0, 12], the max
of fn is attained at x = 12, so now ‖fn‖∞ = 12/(12 + n) → 0 as n → ∞. We conclude
that it is uniformly convergent on [0, 12].

(b) The pointwise limit is the constant one for x ∈ (1,∞). We have

d

dx

(
1− xn

1 + xn

)
=

d

dx

1

1 + xn
=
−nxn−1

(1 + xn)2
< 0, x ∈ (0,∞) ,
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so the supnorm is given by limx→1 1/(1+xn) = 1/2. ‖fn−1‖∞ = 1/2. It means ‖fn−1‖∞ =
1/2 6= 0, so no uniform convergence on (1,∞). On the other hand, on [2, 5] the supnorm
is attained at x = 2, so ‖fn − 1‖∞ = 1/(1 + 2n) ⇒ 0.

8. Study the uniform convergence of the following sequence of functions by any method.

(a)

{
nx

1 + n2x2

}
; [0,∞) .

(b)

{
sinnx

1 + nx

}
; [0,∞), [1,∞) .

Solution. (a) The pointwise limit is the zero function. By taking derivative we see that
the maximum of fn is attained at x = 1/n. It follows that∥∥∥∥ nx

1 + n2n2
− 0

∥∥∥∥ =
n× 1/n

1 + n2 × 1/n2
=

1

2
6= 0 ,

so the convergence is not uniform.

(b) The pointwise limit is again the zero function. It is not good to determine the maximum
of each function. But we observe that fn(π/(2n)) = 2/(2 + π), so∥∥∥∥ sinnx

1 + nx
− 0

∥∥∥∥ ≥ fn ( π2n) =
2

2 + π
6= 0 ,

so the convergence is not uniform. In this case it is nice to draw an ε-tube with ε = 1/4,
say, to visualize the situation.

9. Study the pointwise and uniform convergence of
{
nαxβe−nx

}
on [0,∞) for α, β > 0.

Solution. (c) The pointwise limit is the zero function on [0,∞). We find the maximum
of fn = nαxβe−nx by setting

0 =
d

dx
fn(x) = nαβxβ−1e−nx − nα+1xβe−nx = 0,

which implies x = β/n. It is easy to check that this is the maximum as fn is positive and
tends to 0 at x = 0 and x =∞. Therefore,

‖x2e−nx − 0‖ = fn(β/n) = ββnα−βe−β ,

which tends to 0 if and only if α < β. We conclude that {nαxβe−nx} uniformly converges
to 0 on [0,∞) iff α < β.


